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Toward support of the use of geometry in advanced simulation, a free-form defor-

mation (FFD) tool was designed, developed, and tested using object oriented (OO) tech-

niques. The motivation for creating this FFD tool in-house was to provide engineers and

researchers a cost efficient, quick, and easy way to computationally manipulate models

without having to start from scratch while readily seeing the resulting geometry. The

FFD tool was built using the OO scripting language, Python, the OO GUI toolkit, Qt,

and the graphics toolkit, OpenGL. The tool produced robust and intuitive results for two-

dimensional shapes especially when multiple point manipulation was utilized. The use

of “grouping” control points also provided the user the ability to maintain certain desired

shape features such as straight lines and corners. This in-house FFD tool could be useful

to engineers due to the ability to customize source code.
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My fiancé, Dustin Pittman, for all of his love and support

My sister, Melissa Peterson, for always being there for me

My twin, Tammy Ladner, for being with me through it all

ii



www.manaraa.com

ACKNOWLEDGMENTS

I would like to take this time to express my sincere gratitude to the many people with-

out whose support and selfless assistance this thesis would not have been possible. First,

sincere thanks are due to Greg Burgreen, my advisor, for the time and effort he has de-

voted to helping me succeed even when times were tough. Second, thanks are due to my

family and friends who never stopped supporting me even when I doubted myself. To my

parents, thank you for encouraging me to continue my education. To my sisters, thank you

for allowing me to complain when no one else wanted to listen. To my fiancé, Dustin, for
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CHAPTER 1

INTRODUCTION

Numerical simulation is primarily used as an investigative tool to predict the physics

associated with a given geometry. Unfortunately, this use of simulation has encouraged a

shortsighted view of geometry as simply a means to obtain the discrete mesh necessary to

perform analysis. More recently, multidisciplinary analysis and design optimization has

required a reconsideration of the role of geometry in advanced simulation. For example,

changes to geometry induced by physics-based simulation or by optimal shape modifica-

tions need to be accurately reflected in the geometric model as well as the discrete mesh

representing that geometry. To date, there are few mechanisms and little automation to

achieve such a dynamic union between geometry, mesh, and shape modifications.

Many of the geometries used in bioengineering applications have a complex topology

and organic shape. Consequently, discrete geometry models are found more frequently

in bioengineering compared to other traditional fields of engineering. Typical bioengi-

neering shapes derive from a diverse range of sources including: MRI and CT medical

imaging data sets, scattered point clouds of complex physiologic structures, and numerical

simulations of growth mechanics of certain biologic processes such as platelet-mediated

deposition and thrombogenesis. Due to the manner in which these data are obtained and

digitally processed, smooth analytical shapes are rarely obtained, and discrete geometry

1
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models have become the normal mode of representation. When these discrete geometries

are part of an advanced simulation that requires dynamic shape modifications, one finds

that a crippling technological void exists.

In general, there are two main categories of geometry representation: CAD-based and

mesh-based. With respect to dynamic shape modification, the capabilities of CAD-based

approaches far exceed those of mesh-based models. Hence, one can find numerous re-

search efforts that try to transform discrete representations into smooth analytical B-spline

and NURBS (Non-Uniform Rational B-Splines) representations. While such methods

have been successful, they are loaded with inordinate complexities and compromises. For

example, automatic conversion of complex polygons or polyhedral meshes with sharp fea-

tures (i.e., ridges, corners, darts, etc.) to B-spline patches remains a challenging problem.

Also, enforcing higher-order continuity at extraordinary vertices is difficult or sometimes

impossible and significantly increases the complexity of an analytical representation. In

view of these limitations, what becomes evident is the need for a robust geometric frame-

work that directly embraces discrete geometric modeling.

1.1 Objectives

The goal of this thesis is to develop an innovative, unified, object-oriented frame-

work focused on the shape manipulation of discrete geometry models. The centerpiece

of the proposed framework consists of free-form shape deformation techniques applied

directly to discrete geometric models. This research implements free-form deformation

(FFD) techniques to provide an object oriented shape modification kernel to computer-

2
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aided engineering analysts and designers. Specifically, Bézier basis functions serve as the

foundation of the shape deformation equations.

1.2 Background

FFD was first introduced by Barr in 1984 [1]. He introduced global and local deforma-

tion techniques as new hierarchical transformations, such as bending, twisting, stretching,

and tapering, for deforming an object. Because the operations are structured hierarchi-

cally, it is easy to create a more complex object from several simple ones. This method

utilizes the surface normal vector and a transformation to achieve the normal vector of a

smooth deformed surface.

Sederburg and Parry later developed a better model in 1986 [18]. Their technique

can encapsulate and deform virtually any type of surface geometry. They make use of

the trivariate Bernstein polynomials for transforming objects through the use of control

points. They compare the FFD volume to a clear, flexible plastic that contains or embeds

an object. Manipulation of the plastic in turn results in manipulation of the embedded

object’s shape.

Another approach to FFD was developed by Chang and Rockwood [2]. This method

utilizes affine transformations, a Bézier curve, and a generalized de Casteljau algorithm.

An object is deformed by repeatedly applying affine transformations in space and warps

along the Bézier curve. Instead of using control points directly, as in [18], this method

utilizes “handles” as indirect actors on the control polygon.

3
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Although these are three unique FFD techniques, all accomplish the same thing, namely,

shape modification. The FFD shape modification technique presented in this thesis works

by positioning a lattice of control points about a discrete model, establishing an analyti-

cal relationship between the lattice and the model, and indirectly modifying the shape of

discrete model via control point manipulation. This procedure produces an interface to

deform discrete meshes in an intuitively consistent fashion.

4
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CHAPTER 2

CURRENT RESEARCH

In the area of FFD, research has historically been focused on animation. Although FFD

is still largely being used by animators, engineers and medical researchers apply the same

techniques introduced by [18] to manipulate relevant geometries with the aim of achieving

better visual results.

2.1 Animation

Cartoon animators use FFD to add personality or movement to a character or object

[4]. For example, FFD techniques could be used to make a character jump. The character

would be squashed first, to make it appear as if it is squatting, and then stretched, to give

the appearance of jumping as far as possible. As another example, an animated car crash

could be modeled more realistically using FFD techniques to locally deform the vehicle

at the point of impact instead of the entire vehicle. This idea has been applied to an

application referred to as “ToonTown.” The developer of ToonTown wanted to find a way

to locally deform one part of a car instead of just demolishing the entire car [6]. Based

on the idea of dropping an anvil on a particular part of the car, he used FFD techniques

to animate an approximate type of effect the anvil would have on the car. Figure 2.1[6]

shows the result of smashing the car in random places.

5
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Figure 2.1

A taxicab after anvils have dropped on it [6]

2.2 Engineering

Engineers at the NASA Langley Research Center have applied FFD techniques in

shape optimization procedures. The use of a nonuniform rational B-spline (NURBS) rep-

resentation, which will be presented in Chapter 4, was found to preserve the smoothness

of the initial geometry while still satisfying properties of geometric accuracy for aero-

dynamic shape as prescribed by National Advisory Committee for Aeronautics (NACA)

[15]. Aerospace engineers sometimes prefer to use FFD techniques that utilize NURBS

in order to reduce the number of design variables during the design optimization process.

Reducing the number of design variables can result in a reduction in the time taken to

optimize a model shape.

6
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2.3 Medical Researchers

Medical researchers have applied FFD techniques to breast MRI [14]. FFD, based on

B-splines, are used to describe local breast motion of volunteer patients. Scans were taken

from several volunteers, and each scan required the volunteer to do something different

(i.e. cough, move around, fully remove herself from the machine, etc). Using FFD in

conjunction with other transformations enabled smoothing of the rigid results produced

due to movement. This technique was able to produce improved images of the breast, and

as a result, could ultimately have a significant impact on detecting breast cancer in early

stages simply due to the improved clarity of the images [14]. Figure 2.2[14] shows a few of

the images produced during this study. The image labeled (d) is a result of applying FFD

techniques along with other transformations. The tumor is much easier to recognize using

this technique compared to the other three techniques studied. Although the description in

[14] was not specific in how the FFD techniques were employed, it was definitively stated

that the use of FFD resulted in the best images.

2.4 Commercial Software

In addition to these research efforts, several software companies have developed shape

manipulation programs to aid in design optimization. These companies rely on the same

basic FFD techniques that current researchers are using, while each of them add their

own unique features. Two of the more well known modeling programs are SculptorTM

(Optimal Solutions Software, LLC, Idaho Falls, ID) and PowerCLAY (Exa Corporation,

Burlington, MA).

7
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Figure 2.2

Breast MR Images [14]
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2.4.1 SculptorTM

SculptorTM is a package that is useful in the area of computational fluid dynamics

(CFD). It started out as an in-house analysis tool but it has since graduated into a powerful

modification tool with an easy to use GUI for CFD engineers [16]. It was built on the

principle of reducing the number of point adjustments required to produce good results.

As a result, it relies on the use of control points to modify a mesh such as an airplane wing.

Not only did SculptorTM make things easier for engineers by reducing the number

of points needed to manipulate a mesh, but it can also be coupled with automatic shape

optimization techniques that include engineering constraints such as pressure drop [16].

It can modify any object whose shape is defined by points of a grid such is common in

the field of numerical simulation or visualization. The new modified shape can then be

reanalyzed using the same, or different, simulation code.

Figure 2.3 [16] shows the use of SculptorTM in modifying the shape of a pipe elbow.

The points that connect the lines of the deformation volume are the control points and are

the only means by which the user can manipulate the pipe elbow [16]. This type of control

volume, in the use of shape modification, is central to programs like SculptorTM .

2.4.2 PowerCLAY

PowerClay is also a shape modification tool that gives users control of shape modifi-

cation through the use of control points. It allows users to produce accurate CAD shapes

without the use of a CAD system and is easier to learn than a full-scale CAD tool [9]. Pow-

erCLAY utilizes two different methods that allow users to select the portion of the model

9
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Figure 2.3

Shape Modification of a pipe elbow using SculptorTM [16]

10
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to modify. The first method, and the only method that will be discussed here, makes use of

a deformation lattice. The region to be modified is selected, and a lattice is drawn around

that portion of the model with control points. Finally, a relationship between lattice and

geometry is established so that manipulation of the control points in turn manipulates the

shape.

Figure 2.4

Image of PowerCLAY [9]

Figure 2.4 [9] shows the result of modifying the arms of a human model. Without

PowerCLAY, making the arms appear to move closer to the body would be a very time

consuming job as each and every point would have to be modified individually. Through

the use of a lattice, modifying the arms on the model becomes a much easier process and

produces effective and intuitive results.

These recent advances in research and software development inspired the production

of an in-house FFD tool. In the next few chapters, the development environment, mathe-

matics behind FFD, components of FFD, and code development will be discussed. Several

11
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examples will be introduced and discussed and finally ideas for future work on the current

tool will be mentioned.
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CHAPTER 3

OBJECT-ORIENTED DEVELOPMENT ENVIRONMENT

After the decision was made to build the FFD tool from scratch, the development en-

vironment had to be chosen. In general, there are two types of development environments:

procedural oriented (PO) and object oriented (OO). PO programming is an approach of

coding a program such that it is built around functions and statements that manipulate

data. OO programing (OOP) is a methodology that allows the programmer to combine

data and functionality into an “object” [21], where an object refers to an entity that ex-

hibits specified characteristics and behaviors. It contains data and procedures along with

an interface that describes how it can interact with other objects. An object is visually

represented in Figure 3.1 [7]. The FFD tool needed certain desirable features such as

multi-platform capability and reusability. It also had to be intuitive and simple to use and

had to produce expected results. Because of these features, OO design (OOD) and OOP

were obvious choices for the development environment. As a result, the overall frame-

work and programming language also need to be OO friendly. Utilizing OO techniques to

satisfy the desired features was also one of the goals of this thesis.

13
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Figure 3.1

An abstract object

3.1 Design

OOD forces programmers to think in terms of objects rather than procedures. Refer-

ence [7] defines OOD as “a programming language that has five conceptual tools to aid

the programmer”. These five conceptual tools [20][7], and their definitions are:

1. Encapsulation: the ability to build self-contained pieces of software,

2. Information hiding: the ability to protect certain data members so they cannot be
changed by the user,

3. Inheritance: the ability of an object to “inherit” all the traits of a different object,

4. Interface: the ability of the object to interact with an outside entity,

5. Polymorphism: the ability to define different functions or classes with the same
name.

Programs that follow OOD can be more readable than non-OO programs, because it

follows the natural way of thinking. Another benefit of OOD is that debugging the code

becomes easier. This is a direct result of programming with objects after the project has

been designed. Once one object has been debugged, then it often does not need to be

considered when debugging the rest of the program.

14
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3.2 Programming

OOP is a design process that allows inheritance and polymorphism but is not restricted

to any one programming language. It gives the programmer a better way to organize

the program due to the use of classes and modules within these classes. OOP forces

the programmer to think of programs in abstract terms [20]. For example, a house can

be abstracted as several “house” objects classified into the different architectural style:

Beach, Colonial, Country, Log, etc. Each would also have several room objects: family

room, bedroom, bathroom, kitchen, and so on, which are characteristic of that particular

style.

Thinking of objects in this natural way fits the thesis problem. It is natural to think of

the FFD tool in object oriented terms. The interface is one object, the manipulation space

is another object, the FFD lattice is yet another object, and so on. These objects must be

able to work together to achieve a fully functional FFD tool.

Recalling our desired features from the previous section, OOP is the most logical deci-

sion for the development environment. Ultimately, the goal of OOP is to produce natural,

reliable, reusable, mantainable, and extendable code in a timely manner [20]. OOP allows

the FFD tool to be built while successfully attaining all of the desired features and reduc-

ing the time spent during development as long as the OOD is followed exactly. It also

allows the program to be both maintainable and extendable due to the inherent nature of

coding with objects.

In general, classes and objects are the building blocks of OOP where a class represents

a new data type and an object is an instance of the class. Each of these classes have

15
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attributes and methods associated with them. Attributes refer to the characteristics of a

class, and methods refer to behavior of a class [21]. For example, a “house” object may

have an attribute called “color” or “number of rooms,” and a method called “open door.”

3.3 GUI Frameworks

In keeping with OOD and OOP, the graphical user interface (GUI) framework (aka

GUI library) needs to be OO friendly. A general GUI framework is simply a set of pre-

programmed classes and functions with several built-in objects such as buttons and menus

that are essential for an effective user interface. The GUI framework for the FFD tool

should make the coding process much easier and more reliable while also being compre-

hensive but not overwhelming. Although there are many GUI libraries currently available

today, but not all satisfy the requirements of the FFD tool. Some are not cross-platform

compatible (such as Motif), while others were developed for a specific programming lan-

guage (such as Tk).

The GUI library chosen for the purpose of this thesis and which satisfies all of the

required features is Qt (Trolltech, ASA, Oslo, Norway). According to [11], Qt is a de-

velopment framework that enables a user to develop high-performance, cross-platform

applications through the use of specific tools and features. Qt has several built-in classes

and objects, most of which inherit a base class. Even a cursory survey of classes in the Qt

documentation clearly reveals that Qt was built using OOD and OOP principles.

16



www.manaraa.com

3.4 Languages

In keeping with the OOD, the language chosen also needed to be OO friendly. Recall

some of the key features of the FFD tool: it must be easy to code, it must be simple to

use, and it must have multi-platform capability. Although there are many programming

languages available that are considered to be OO languages, some have more benefits than

others. For example, although C++ and Java are OO languages, the required syntax for

each of these languages takes an experienced programmer. One missed semicolon can

result in a great deal of grief for an inexperienced programmer! Python, on the other hand,

is considered to be one of the simplest OO programming languages to learn because of

the simplicity of its syntax. As an example, a for loop for C++ and Python are compared

below:

f o r ( i n t i =0 ; i <10; i ++)

s t d : : c o u t << i << ‘ ‘ ’ ’ << s t d : : e n d l ;

f o r i i n r a n g e ( 1 0 ) :

p r i n t i , ‘ ‘ ’ ’

The C++ snippet is the top piece of code, and the Python snippet is the bottom. Although

the loop is a simple loop, the simplicity of Python’s syntax is still evident.

Python is a dynamically typed language that was developed with the OO framework in

mind [10][13]. As a direct result of not having to worry about object data types, it is usually

more natural to create a functional OO program in Python than any other language [13].

Python is also cross-platform, running on all major operating systems and even on Nokia
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mobile phones. It is also free and open source which makes it easier for people to obtain,

both for personal and commercial use. There are also Qt and OpenGL bindings readily

available for Python. As a result, Python was chosen as the programming language for

the FFD tool. Although it was built with OO in mind, Python does not allow information

hiding because of the lack of ‘private’ data; however, the other four requirements for a

programming language to be OO are satisfied.
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CHAPTER 4

MATHEMATICS AND ALGORITHMS OF FFD

In order to fully understand FFD, the mathematics behind the construction of the FFD

lattice needs to be investigated. A 2D FFD lattice can be thought of as a lattice of n x

m control points that surround the input mesh. These n x m control points serve as the

interface between the user and the input mesh. Within this lattice, the mesh is affected by

the manipulation of the control points using a specialized Non-Uniform Rational B-Spline

(NURBS) entity known as a Bézier curve.

4.1 NURBS Curve

NURBS have become a widely accepted standard for the representation of geometric

information in computer processing. Over the past several years, the success of NURBS

is due largely to the fact that the algorithms are very fast and numerically stable. They

also provide a common mathematical basis for representing both analytic shapes, such as

circles and spheres and free-form shapes, such as an airplane or human body [12][8].

Mathematically, a pth-degree NURBS curve is defined by its degree, control points,

knots, and evaluation rule [12]. Here, degree is a positive whole number that refers to

the type of curve, i.e. a linear curve is degree 1 where as a cubic curve is degree 3.

Furthermore, a NURBS curve of degree p is said to be a of order p + 1. A pth-degree
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NURBS curve always has at least p + 1 control points which are used to manipulate the

NURBS curve associated with them. Each of these control points have a weight associated

with them, and when every control point has a weight of exactly 1, the curve is considered

“rational.” Knots are a list of numbers, specifically (degree + n + 1) numbers, where n is

the number of control points. The list is usually called a knot vector and each element is a

knot value [8]. Each knot value has a multiplicity associated with it where the multiplicty

is the number of times that particular knot value appears in the list. The multiplicity of

a knot vector must be less than or equal to the degree of the curve. For example, for a

general NURBS curve of degree 3 with 11 control points, the knot vector given by:

U = 0, 0, 0, 1, 2, 2, 2, 3, 7, 7, 9, 9, 9 (4.1)

satisfies the requirements to be list of knots. None of the knot values appears more than 3

times (i.e. none of the knot values have a multiplicity > degree). The multiplicity of the

knots always has an effect on the appearance of the curve. For example, a NURBS curve

is less smooth when there are multiple values of a knot in the middle of the knot vector.

The evaluation rule is simply the formula that returns a point on a NURBS curve [12].

The formula for a general NURBS curve is given by Equation 4.2.

C(u) =
n∑

i=0

Ri,p(u)Pi for a ≤ u ≤ b (4.2)

where C is the physical point on the curve, Pi are the control points and Ri,p are the rational

basis funtions and are given by Equation 4.3

Ri,p(u) =
Ni,p(u)wi

∑n
j=0 Nj,p(u)wj

(4.3)
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where wi are the weights associated with the control points, and Ni,p(u) are the pth-degree

B-spline basis functions defined on the nonperiodic knot vector

U = {a, ..., a
︸ ︷︷ ︸

p+1

, up+1, ..., um−p−1, b, ..., b
︸ ︷︷ ︸

p+1

} (4.4)

When dealing with NURBS curves, certain geometric properties are observed. Assuming

that a = 0, b = 1, and wi > 0 for all i, we have an important property: C(0) = P0 and

C(1) = Pn which states that the first and last control points are the first and last points on

the curve. Another important property is that the curve is changed through manipulation

of the control points only. There are several other properties satisfied by NURBS curves,

but they will not be detailed here [8]. See Reference [8] for a more detailed description.

4.2 Bézier Curve

In mathematics, all types of conic curves can be represented by rational functions,

which are defined as the ratio of two polynomials. Rational Bézier curves are no different,

and are dfined as NURBS curves with no interior knots [8] defined by Equations 4.5 and

4.7. Note here that Pi represents the ith control point and Bi,n represents the ith Bernstein

polynomial of degree n.

C(u) =
n∑

i=0

Ri,n(u)Pi for 0 ≤ u ≤ 1 (4.5)

where

Ri,n(u) =
Bi,n(u)wi

∑n
j=0 Bj,n(u)wj

(4.6)
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Bi,n(u) =








n

i








Pi(1 − u)n−iui (4.7)

The rational basis functions for this curve, given by Ri,n(u) satisfies several proper-

ties, one of which is that the polynomial Bézier curves are a special case of rational Bézier

curves [8]. Polynomial Bézier curves, given by Equation 4.8, have most of the proper-

ties of rational Bézier curves, except that they are limited in the types of curves that can be

represented well (i.e. no conic curves can be represented). However, because the computa-

tion of points are efficient, the numerical processing is quick and reliable, and the functions

have small space requirements, the benefits can potentially outweigh the shortcomings.

B(u) =
n∑

i=0

PijBi,n(u) for u ∈ [0, 1] (4.8)

When evaluated, this equation will return a point, B, that is on the Bézier curve of degree

n. This equation serves as the basis for the FFD lattice. Figure 4.1 shows a simple cubic

Bézier curve and its control points. The dashed line connecting the control points is the

control polygon which is a connected sequence of points used to control the shape of the

curve. Notice that every point on the curve lies within the control polygon. This is not just

coincidence. One of the useful properties of Bézier curves is that the curve will always

remain within the convex hull of the control points regardless of how they are manipulated.

A convex hull is simply the smallest convex set that includes all points in the data set, or

on the curve this case. Figure 4.2 [3] shows an example of a convex hull, specifically the

rubberband idea of the convex hull. The idea is to surround the outermost points in the set

with a rubberband to obtain the smallest convex set of the data.
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Figure 4.1

A Cubic Bézier Curve and its Control Points

Figure 4.2

Example of a Convex Hull
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4.2.1 de Casteljau’s Algorithm

There are several methods to evaluate a Bézier curve [8]. One such algorithm is the

deCasteljau algorithm, and the pseudocode is given by Algorithm 1[8][19]. This algorithm

was the first algorithm available for drawing parametric curves. It is a so-called corner

cutting algorithm that ultimately returns a single point on a Bézier curve of nth-degree.

The point on a curve is calculated by repeated linear interpolation between two points,

coded by Line 6 in Algorithm 1, and results in a triangular table of points as shown in

Table 4.1. An important thing to remember when coding this algorithm is to save the

Algorithm 1 DE CASTELJAU(float P[], float u, int n)
1: for i = 0 to n do
2: Q[i] ⇐ P [i] // save input
3: end for
4: for k = 0 to n do
5: for i = 0 to n − k do
6: Q[i] ⇐ (1 − u)Q[i] + uQ[i + 1]
7: end for
8: end for
9: return Q[0]

input. If the original input is not saved, the original control points will be over written and

therefore lost. This algorithm, compared to others similar to it, minimizes round-off error

therefore producing better results [8]. The error is minimized due to the use of repeated

linear interpolation. Figure 4.3 graphically illustrates the corner cutting process to obtain

the points shown in Table 4.1.
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Figure 4.3

Finding points on a Bézier curve using de Casteljau’s Algorithm

Table 4.1

Points generated by DE CASTELJAU’s Algorithm

P0

P1,0

P1 P2,0

P1,1

P2

...
...

... Pn−1,0

...
...

... · · · Pn,0 = C(u0)
...

...
... Pn−1,1

Pn−2

P1,n−2

Pn−1 P2,n−2

P1,n−1

Pn
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4.3 Bézier Surface

A Bézier surface is a generalization of a Bézier curve and is defined by the following

equation:

B(t, u) =
n∑

i=0

m∑

j=0

Pi,jBi,n(t)Bj,m(u) for t, u ∈ [0, 1] (4.9)

where all of the nomenclature from a Bézier curve still applies to the surface. One im-

portant property of the Bézier surface is that it is contained completely within the convex

hull of the control points. This property follows directly from the fact that a Bézier sur-

face is simply an extension of a Bézier curve. Algorithm 1 can also be generalized to two

dimensions and used to calculate a point on a Bézier surface.

4.4 Relationship to FFD

All of this math is the core of FFD. The formula for a Bézier surface is used to calculate

the new location of a point of a deformed object inside an FFD lattice. The entire FFD is

defined in terms of a tensor bivariate Bernstein polynomial given by

X(u, v) =
n∑

i=0

m∑

j=0

Bi,n(u)Bj,m(v)Pij (4.10)

where Bi,n and Bj,m are given by Equation 4.7. Equation 4.10 is known as the deformation

function, is exactly equivalent to Equation 4.9, and represents the relationship between

input data, X, and the user manipulated control points, P.
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CHAPTER 5

COMPONENTS OF FFD

To build an FFD, several components are needed. A key ingredient to an FFD is an

input mesh. From this mesh, a bounding box is created and a list of control points are

generated based on the number of subdivisions in the n and m direction. After the list

of control points have been generated, a transformation of the input mesh from physical

coordinates to computational coordinates is required. After a control point is manipulated,

the mesh data is transformed back into physical coordinates and is redrawn to reflect the

changes. These components will be discussed in more detail in the following sections of

this Chapter.

5.1 Input Mesh

The input data is simply a list of discrete points that define the discrete shape of an

object. The first line in the file contains the number of points that will be found in the

file. Each remaining line contains the point location, in column format, with x and y

coordinates separated with a space. The first eleven lines of a sample input file are shown

in Table 5.1.
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Table 5.1

Portion of Sample Input Mesh

38
0.300000 0.500000
0.301186 0.512565
0.305163 0.523734
0.311934 0.533507
0.321496 0.541884
0.333850 0.548864
0.348997 0.554449
0.366936 0.558637
0.387668 0.561429
0.411191 0.562825
...

...

5.2 Bounding Box

From the input mesh, a bounding box is defined such that all points in the input mesh

lie in or on the bounding box. These points are later used to establish the lower-left corner

and upper-right corner points of the FFD lattice. To do this, these two points are first

manipulated so that all points of the input mesh will lie totally within the FFD lattice. This

will be discussed in the next section.

5.3 FFD Lattice

The FFD lattice consists of three different constituitve components. First, the mesh

needs to be represented or embedded within the lattice framework and nomenclature. As

a result, a function is needed to transform the physical coordinates of the input mesh to

the computational coordinates of the FFD lattice. The computational coordinates of the
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lattice are on the interval [(0, 0), (1, 1)]. Second, control point manipulation from the user

is a major component of FFD. Without manipulation of the lattice, manipulation of the

embedded mesh cannot occur. Last, after a control point (or several points) have been ma-

nipulated, the mesh points as represented in computational space need to be transformed

back into physical space in order to be rendered properly. These three components will be

discussed further in the following three sections.

5.3.1 Transformation of Mesh to Computational Coordinates

This portion of the FFD sets up the local coordinate system [18] such that any physical

point, (x,y), will uniquely map to computational coordinates, (u,v), satisfying

X = X0 + uU + vV (5.1)

where the computational coordinates can be found using linear interpolation as

u =
x − Xmin

Xmax − Xmin

and v =
y − Ymin

Ymax − Ymin

(5.2)

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. This can be shown in Figure 5.1 [17]. It is important

to note that physical points, (Xmin, Ymin) and (Xmax, Ymax) map to the computational

coordinates (0,0) and (1,1), respectively.

Once the computational coordinates of the mesh (u, v) are calculated, they are held

fixed during the manipulation of control points.
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Figure 5.1

FFD local coordinates

5.3.2 Control Points

A grid of n + 1 x m + 1 control points are then imposed on the mesh such that their

initial locations are defined by the following:

Pij = X0 +
i

n
U +

j

m
V (5.3)

These control points are then manipulated by the user, and the updated location of the

control point(s) is used to transform the computational coordinates of the mesh back to

physical coordinates.

5.3.3 Transformation of Mesh back to Physical Coordinates

Recall Equation 4.10, the deformation equation:

X(u, v) =
n∑

i=0

m∑

j=0

Bi,n(u)Bj,m(v)Pij (5.4)

Using the computational coordinates of the mesh which are determined using Equation

5.2, new physical coordinates are obtained when the control points are manipulated. The
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new physical coordinates of the mesh can be found using Equation 4.10 where (u, v) are

the computational coordinates of the mesh and Pi,j are the control points, each of which

may or may not have been moved by the user.

5.4 Output Mesh

Once the control points have been manipulated and the input data has been trans-

formed back to physical coordinates, the user then needs the ability to view the output

mesh. In addition, the mesh can be written to an output file that can be saved for later use.
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CHAPTER 6

DEVELOPMENT OF THE CODE

The development of the code was the next logical step in the thesis process. Code for

each of the major components was needed to implement the FFD tool. Built-in functions

from OpenGL and Qt, as well as built-in definitions in Python proved to be very useful

throughout the coding process. Also, an existing OpenGLWidget class was modified to

handle control point manipulation. The development of the major components of the FFD

tool are discussed in the following sections.

6.1 Picking Functionality

As mentioned in Chapter 5, one of the major components of an FFD is control point

manipulation. In order to manipulate the control point, the user must be able to select

(or pick) it first. This ‘picking’ functionality was handled using the OpenGL selection

buffer. To utilize the selection buffer, a buffer and buffer size are specified. Selection

mode is then entered and the objects are “rendered” to the selection buffer. A call to

glRenderMode(GL RENDER) exits selection mode and returns the records that were

“hit” while in selection mode. Each record contains the minimum and maximum depth

values and the object id that is uniquely associated with each control point. The minimum

and maximum depth values are not used in a 2D implementation of an FFD. However, for
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3D implementations, this information would be useful in determining which object was

on top. The hit object id’s are stored in a list which is utilized to identify which control

point(s) will be manipulated by the user.

6.2 Rendering the Mesh

The input file containing the input data must be in the format of Table 5.1 from Chapter

5. This data is read and stored accordingly in an object defined as a PointCloud object.

This object has attributes for the number of nodes in the file and the position of each

node. It also has functions for finding the centerpoint of the data, which is used to center

the object in the window for viewing, and a bounding box, which is used when building

the FFD lattice. The data stored is drawn to the screen using the standard point drawing

functions in OpenGL via the OpenGLWidget object. The mesh is drawn as discrete data

points and rendered using a ModelViewer object.

Table 6.1

Raw Data for a Simple 2D Vase

6
1 7
2 6
2 2
6 2
6 6
7 7
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As a simple example, consider a simple 2D vase object that can be defined by the six

points in Table 6.1. This mesh data, once stored in a PointCloud object, is referred to as

the FFD shape. This shape is then embedded in an FFD lattice which is discussed in the

next section.

6.3 Developing the FFD Lattice

The FFD lattice was developed as an object, FFD 2d, in the BasicObjects mod-

ule. This object has attributes to store the control points, the transformed mesh data, and

whether or not a control point is selected. It also has functions to transform the mesh data

and render the full lattice and mesh to the screen.

When an FFD lattice is first initialized using the method FFD 2d(shape, ni, nj, per-

cent), the new FFD object contains all information required to manipulate and draw the

lattice and shape. Recall that the input mesh data is stored as a PointCloud object and

becomes the shape of the FFD. As a result, manipulation of the shape is equivalent to

manipulation of the mesh. Upon initialization, the bounding box is determined from the

shape argument, which is the input mesh data stored in a PointCloud object. The bound-

ing box is the smallest box that can be drawn around the object, and it will typically have

some of the object data on its edges. The percent argument is used to expand the bound-

ing box so that all object points are located completely within the bounding box. A typical

value for percent is 0.01 or 10 percent. This specific value expands the current bounding

box by 10 percent of its diagonal.
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After the “expanded” bounding box is determined, the list of control points is then

populated. These points are stored in a Python built-in data structure, called a dictionary

which is a mapping object indexed by a key. Since a dictionary cannot have an ordered

pair as its key value, each ordered pair (i, j) has a corresponding integer instead, namely

i + (ni + 1) ∗ j. Figure 6.1 shows the positioning of the control points in the lattice. Note

that ni = 3 and represents the number of subdivisions in the i direction.

Figure 6.1

Control Point Location

Notice that P0 = P0,0, P1 = P1,0, and so on. The single integer subscripts for each

point shown in the figure are the key values of the Python dictionary. The x and y coordi-

nates, as well as a boolean attribute for selection, is stored for each control point. The x

and y coordinates are found using the ni and nj arguments. Table 6.2 is an example of a list

of control points with one control point being selected and the others being marked as un-

selected. Once the list of control points has been found, the shape data is then transformed

using Equation 5.2. The lattice and mesh are then rendered to the screen. This process
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takes care of the initialization of the FFD lattice object. The simple 2D vase, whose data

was given in Table 6.1, and its control lattice is shown in Figure 6.2.

Figure 6.2

Rendering a Simple 2D Vase

6.4 Control Point Manipulation

The manipulation of control points is handled using OpenGL and Qt. The built-in Qt

class QGLWidget normally handles key and mouse press events. However, the normal key

and mouse press events are overloaded to specifically work for control point manipulation.

Standard actions for graphics are still available such as zoom, translate, and rotate. In

addition to these actions, moving a selected control point was also added.
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Table 6.2

List of Control Points

0: 0.300000 0.500000 0
1: 0.301186 0.512565 1
2: 0.305163 0.523734 0
3: 0.311934 0.533507 0
...

If the user presses the left mouse button and drags it, he/she will in fact zoom in or out

on the scene. If instead, the middle mouse button is pressed and the mouse is then moved,

the scene is rotated. Similarly, if the right mouse button is pressed and the mouse is moved,

the scene is translated. Actual control point manipulation is not done until a control point

is marked as selected. The user selects a control point by holding the CTRL key and

clicking the desired point with the left mouse button. If the point is already selected, it is

de-selected. As a constraint to maintain certain desired features, multiple control points

can be selected in this way and manipulated as a group. This constraint will be discussed

in the next chapter.

Once a control point has been selected, it is then eligible to be moved by the user. The

difference between the original mouse press and where the mouse is currently positioned

is found. This difference is then added to the position of the selected control point, and the

new location is determined. The scene then requires a redraw to reflect any changes in the

control points and shape. Redrawing the scene to reflect the new position of the control

point(s) requires a redraw of the entire FFD object which is where the shape is updated

and drawn as well.
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CHAPTER 7

RESULTS AND DISCUSSION

The final FFD tool developed in this study handles 2D meshes only. Overall, the FFD

tool produces robust and intuitive results.

7.1 Initialization of the FFD Tool

Figure 7.1 is a screenshot of the FFD Tool initialized with an airfoil as the input data.

Figure 7.1

Initialized FFD Tool
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In the final FFD tool, functionality for selection and manipulation of multiple control

points was added. The addition of this extra functionality proves to be beneficial when

manipulating different types of objects.

7.2 FFD Manipulation of Input Mesh

Any type of mesh, structured or unstructured, or any pixelated data such as graphic

images can be manipulated using the FFD tool, but due to the way the mesh is displayed,

only manipulation of discrete unconnected data points will be demonstrated. The follow-

ing screenshots demonstrate the manipulation of several different examples of input data.

Figure 7.2 shows manipulation of a standard airfoil; Figure 7.4 shows manipulation of a

geometrically complex structure; Figure 7.6 shows manipulation of a blood flow microde-

vice; and Figure 7.7 shows manipulation of a mesh that contains multiple disconnected

objects.

Notice that the airfoil in Figure 7.2 is a simple geometry, and as a result, it can be

manipulated using either one point or multiple points while producing basically the same

output mesh. Figure 7.3 demonstrates this. The same four control points were moved to

the same approximate locations in each image in order to increase the thickness of the

airfoil. In the first image, the points were manipulated individually whereas the points

in the second image were grouped and manipulated at the same time. This is the reason

that only one point is selected (denoted by dark colored spheres) in the first image and

four points are selected in the second image. Although the use of multiple point selection

reduced the time taken to manipulate the airfoil, basically the same results were achieved.

39



www.manaraa.com

Figure 7.2

Manipulation of an Airfoil

Figure 7.3

Single Point Manipulation v Multiple Point Manipulation of an Airfoil
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However, it will be shown that multiple point selection/manipulation may produce better

results depending on the design intent and/or geometry of the original mesh.

Figure 7.4

FFD Initialization of Complex Structure

A geometrically complex structure such as the one in Figure 7.4 can be easily ma-

nipulated using the FFD tool. The ability to select and manipulate multiple points at one

time guarantees the user the ability to maintain certain features of the original mesh. Fig-

ure 7.5 shows the difference between manipulating one point versus manipulating a group

of points. Single point manipulation is shown in the figure on the left, and multiple point

manipulation is shown in the figure on the right.
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Figure 7.5

Comparison of Single Point Manipulation and Multiple Point Manipulation

An inexperienced user with the intent of shortening the rightmost extension of the

complex geometry may decide to move only one control point (as in the left image of

Figure 7.5). As such, the user may be disappointed to find that although the extension is

shortened, the sharp corner feature is lost and is now rounded. However, if the control

points surrounding the sharp corner are selected as a group and manipulated as a group

(as in the right image), the extension is shortened, and more importantly, the sharp corner

feature is preserved. Although the user would be able to eventually achieve the same

results using single point manipulation (by moving the other three points surrounding the

sharp corner), it is more convenient and efficient to group the control points and move

them as one object.

Blood flow devices, such as the one used in Figure 7.6, can also be manipulated using

the FFD tool. In this particular example, the length of the smaller tube connecting the

two larger tubes is lengthened. This type of manipulation is in fact a practical example

of bionengineering usage at Mississippi State University’s High Performance Computing
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Figure 7.6

FFD Manipulation of Blood Flow Microdevice
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Collaboratory. This geometry is a specific geometry studied by Tammy Ladner during her

Master of Science thesis investigation of blood flow in a capillary tube [5]. Blood flow in a

longer tube may exude different flow characteristics or behaviors when compared to flow

through a shorter tube. The FFD tool can readily facilitate this type of geometry change.

Increasing the diameter of the smaller tube is another a practical example. A user-defined

FFD around that particular area would be useful to increase the diameter of the smaller

tube without affecting the larger diameter tubes.

Figure 7.7

FFD Manipulation of Mesh with Multiple Objects

Finally, manipulation of a mesh with multiple distinct objects also produces efficient

results, depending on the intent. Figure 7.7 represents a multi-element airfoil. Aerospace

engineers may wish to see how changes to the larger airfoil affect its aerodynamics. The

FFD tool works perfectly for this intent. The image on the right demonstrates single point

manipulation to lift the tail and round the “cargo” area of the larger airfoil.
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In summary, the FFD tool produces intuitive and robust results, especially when mul-

tiple points are selected and moved at one time. Using this feature allows more features of

the original shape to be maintained.
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CHAPTER 8

CONCLUSIONS

The objective of this thesis was to build an innovative, unified, object-oriented free-

form shape deformation tool with Bézier basis functions serving as the foundation for

the deformation lattice. This tool was to focused on manipulating discrete geometries for

computer-aided engineering analysis and design.

A free-form shape deformation tool was developed. Examples of manipulation of

several types of discrete meshes were shown in Chapter 7. The decision to use OOD and

OOP proved to be valuable. OOD aided in designing the program, and OOP aided in

organizing and debugging the code.

This FFD tool can serve as the basis for a 3D shape deformation tool. Because it was

built on OO principles, it should be easy to modify and add additional functionality. The

use of Python will make it accessible for anyone to update because it is free, open-source,

and easy to learn due to the simple syntax.

The FFD tool developed was object-oriented and used a Bézier surface as the basis for

the deformation lattice. As a result, the objective of the thesis was achieved.
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CHAPTER 9

FUTURE WORK

Work could be done to the FFD tool to make it user friendly and more functional to

engineers and designers. Some suggestions would be:

• Add a GUI

• Add functionality for an embedded FFD

• Add functionality for a user-defined FFD

• Expand to 3D while maintaining functionality

The addition of the above mentioned items would make the program more user friendly,

allow the user to focus manipulation on one section of the mesh, and give the user the abil-

ity to manipulate 3D objects in addition to 2D objects.

Addition of a GUI with standard pull down menus would prove to be very useful. For

example, adding a pull down “File” menu with the ability to “Open”, “Close”, “Save”,

and “Exit” would allow the user to start on a new FFD without losing data or having to

restart the program. An “Edit” pull down menu would also be useful if the functionality

to “Redo” and “Undo” changes was added. This would allow the user to decide whether

they like the most recent change or not. Currently, no functionality has been implemented

for any of this.
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Two additional modes of shape manipulation could be added to the present capabili-

ties that would improve its usability under certain circumstances. These will be referred to

as: embedded FFD and user-defined FFD. The basic idea of the embedded FFD is to en-

close or “embed” a selected subset of the primary lattice’s control points within a separate

enclosing FFD. Hence, the enclosed primary control points become the input data to the

embedded FFD. Manipulation of the embedded FFD would directly modify the control

point locations of the primary FFD lattice and, as a consequence, modify the shape of the

primary geometry data. This would enable, for example, a smooth and coordinated manip-

ulation of a higher order (many control points) primary lattice via the manipulation of an

enclosing lower order (fewer control points) embedded FFD. The basic idea behind a user-

defined FFD is one of localized shape modification to geometric data. This FFD would be

defined via a user-defined bounding box that surrounds the region of interest desired for

shape modification. For example, one may desire to change the shape of only the middle

airfoil of a multi-element airfoil geometry. A user-defined bounding box would be drawn

to enclose the middle airfoil shape, and the resulting user-defined FFD would be populated

with control points (see Figure 9.1). Manipulation of this FFD would locally shape-modify

the middle airfoil only, leaving the remaining adjacent geometry unchanged. For tightly

packed geometries, the user-defined bounding box may unavoidably enclose whole or par-

tial geometry data from adjacent shapes. In this case, a deselection mechanism would be

needed to remove the undesired geometry data from the user-defined FFD.
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Figure 9.1

Preliminary User Defined FFD

Finally, extension of the FFD tool to 3D would give the user the ability to handle any

type of discrete mesh. Once expanded, the FFD tool would be more useful for realistic

problems of interest.
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